Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2778: 43-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478270

RESUMO

Numerous bioinformatics tools allow predicting the localization of membrane proteins in the outer or inner membrane of Escherichia coli with high precision. Nevertheless, it might be desirable to experimentally verify such predictions or to assay the correct localization of recombinant or mutated variants of membrane proteins. Here we describe two methods (preferential detergent solubilization and sucrose-gradient fractionation) that allow to fractionate Gram-negative bacterial membranes and subsequently to enrich inner or outer membrane proteins.


Assuntos
Escherichia coli , Proteínas de Membrana , Membrana Celular , Escherichia coli/genética , Bactérias Gram-Negativas , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias , Fracionamento Celular/métodos
2.
Protein Expr Purif ; 215: 106409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040272

RESUMO

The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.


Assuntos
Proteínas de Escherichia coli , Vacinas , Yersiniose , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Yersinia ruckeri/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteômica , Vacinas/metabolismo , Proteínas de Escherichia coli/genética
3.
Bioengineering (Basel) ; 10(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829672

RESUMO

Innovative point-of-care (PoC) diagnostic platforms are desirable to surpass the deficiencies of conventional laboratory diagnostic methods for bacterial infections and to tackle the growing antimicrobial resistance crisis. In this study, a workflow was implemented, comprising the identification of new aptamers with high affinity for the ubiquitous surface protein A2 (UspA2) of the bacterial pathogen Moraxella catarrhalis and the development of an electrochemical biosensor functionalized with the best-performing aptamer as a bioreceptor to detect UspA2. After cell-systematic evolution of ligands by exponential enrichment (cell-SELEX) was performed, next-generation sequencing was used to sequence the final aptamer pool. The most frequent aptamer sequences were further evaluated using bioinformatic tools. The two most promising aptamer candidates, Apt1 and Apt1_RC (Apt1 reverse complement), had Kd values of 214.4 and 3.4 nM, respectively. Finally, a simple and label-free electrochemical biosensor was functionalized with Apt1_RC. The aptasensor surface modifications were confirmed by impedance spectroscopy and cyclic voltammetry. The ability to detect UspA2 was evaluated by square wave voltammetry, exhibiting a linear detection range of 4.0 × 104-7.0 × 107 CFU mL-1, a square correlation coefficient superior to 0.99 and a limit of detection of 4.0 × 104 CFU mL-1 at pH 5.0. The workflow described has the potential to be part of a sensitive PoC diagnostic platform to detect and quantify M. catarrhalis from biological samples.

4.
J Biomed Mater Res B Appl Biomater ; 111(2): 354-365, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36063491

RESUMO

Enrichment and diagnosis tools for pathogens currently available are time consuming, thus the development of fast and highly sensitive alternatives is desirable. In this study, a novel approach was described that enables selective capture of bacteria expressing hydrolyzed collagen-binding adhesins with hydrolyzed collagen-coated magnetic nanoparticles (MNPs). This platform could be useful to shorten the time needed to confirm the presence of a bacterial infection. MNPs were synthesized by a simple two-step approach through a green co-precipitation method using water as solvent. These MNPs were specifically designed to interact with pathogenic bacteria by establishing a hydrolyzed collagen-adhesin linker. The bacterial capture efficacy of hydrolyzed collagen MNPs (H-Coll@MNPs) for bacteria expressing collagen binding adhesins was 1.3 times higher than that of arginine MNPs (Arg@MNPs), herein used as control. More importantly, after optimization of the MNP concentration and contact time, the H-Coll@MNPs were able to capture 95% of bacteria present in the samples. More importantly, the bacteria can be enriched within 30 min and the time for bacterial identification is effectively shortened in comparison to the "gold standard" in clinical diagnosis. These results suggest that H-Coll@MNPs can be used for the selective isolation of specific bacteria from mixed populations present, for example, in biological samples.


Assuntos
Infecções Bacterianas , Nanopartículas de Magnetita , Humanos , Magnetismo , Bactérias , Colágeno
5.
Front Mol Biosci ; 9: 918480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911955

RESUMO

The outer membrane of Gram-negative bacteria acts as an additional diffusion barrier for solutes and nutrients. It is perforated by outer membrane proteins (OMPs) that function most often as diffusion pores, but sometimes also as parts of larger cellular transport complexes, structural components of the cell wall, or even as enzymes. These OMPs often have large loops that protrude into the extracellular environment, which have promise for biotechnological applications and as therapeutic targets. Thus, understanding how modifications to these loops affect OMP stability and folding is critical for their efficient application. In this work, the small outer membrane protein OmpX was used as a model system to quantify the effects of loop insertions on OMP folding and stability. The insertions were varied according to both hydrophobicity and size, and their effects were determined by assaying folding into detergent micelles in vitro by SDS-PAGE and in vivo by isolating the outer membrane of cells expressing the constructs. The different insertions were also examined in molecular dynamics simulations to resolve how they affect OmpX dynamics in its native outer membrane. The results indicate that folding of OMPs is affected by both the insert length and by its hydrophobic character. Small insertions sometimes even improved the folding efficiency of OmpX, while large hydrophilic inserts reduced it. All the constructs that were found to fold in vitro could also do so in their native environment. One construct that could not fold in vitro was transported to the OM in vivo, but remained unfolded. Our results will help to improve the design and efficiency of recombinant OMPs used for surface display.

6.
Front Microbiol ; 13: 838267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197960

RESUMO

Bartonella henselae is the causative agent of cat scratch disease and other clinical entities such as endocarditis and bacillary angiomatosis. The life cycle of this pathogen, with alternating host conditions, drives evolutionary and host-specific adaptations. Human, feline, and laboratory adapted B. henselae isolates often display genomic and phenotypic differences that are related to the expression of outer membrane proteins, for example the Bartonella adhesin A (BadA). This modularly-structured trimeric autotransporter adhesin is a major virulence factor of B. henselae and is crucial for the initial binding to the host via the extracellular matrix proteins fibronectin and collagen. By using next-generation long-read sequencing we demonstrate a conserved genome among eight B. henselae isolates and identify a variable genomic badA island with a diversified and highly repetitive badA gene flanked by badA pseudogenes. Two of the eight tested B. henselae strains lack BadA expression because of frameshift mutations. We suggest that active recombination mechanisms, possibly via phase variation (i.e., slipped-strand mispairing and site-specific recombination) within the repetitive badA island facilitate reshuffling of homologous domain arrays. The resulting variations among the different BadA proteins might contribute to host immune evasion and enhance long-term and efficient colonisation in the differing host environments. Considering the role of BadA as a key virulence factor, it remains important to check consistently and regularly for BadA surface expression during experimental infection procedures.

7.
Front Microbiol ; 12: 741836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690987

RESUMO

Palladium (Pd), due to its unique catalytic properties, is an industrially important heavy metal especially in the form of nanoparticles. It has a wide range of applications from automobile catalytic converters to the pharmaceutical production of morphine. Bacteria have been used to biologically produce Pd nanoparticles as a new environmentally friendly alternative to the currently used energy-intensive and toxic physicochemical methods. Heavy metals, including Pd, are toxic to bacterial cells and cause general and oxidative stress that hinders the use of bacteria to produce Pd nanoparticles efficiently. In this study, we show in detail the Pd stress-related effects on E. coli. Pd stress effects were measured as changes in the transcriptome through RNA-Seq after 10 min of exposure to 100 µM sodium tetrachloropalladate (II). We found that 709 out of 3,898 genes were differentially expressed, with 58% of them being up-regulated and 42% of them being down-regulated. Pd was found to induce several common heavy metal stress-related effects but interestingly, Pd causes unique effects too. Our data suggests that Pd disrupts the homeostasis of Fe, Zn, and Cu cellular pools. In addition, the expression of inorganic ion transporters in E. coli was found to be massively modulated due to Pd intoxication, with 17 out of 31 systems being affected. Moreover, the expression of several carbohydrate, amino acid, and nucleotide transport and metabolism genes was vastly changed. These results bring us one step closer to the generation of genetically engineered E. coli strains with enhanced capabilities for Pd nanoparticles synthesis.

8.
Front Microbiol ; 11: 510638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072001

RESUMO

Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.

9.
Environ Microbiol ; 22(7): 2939-2955, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32372498

RESUMO

Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.


Assuntos
Doenças dos Peixes/microbiologia , Sistemas de Secreção Tipo V/metabolismo , Virulência/genética , Yersiniose/microbiologia , Yersinia ruckeri/genética , Yersinia ruckeri/patogenicidade , Adesinas Bacterianas , Animais , Biofilmes , Fatores de Virulência/genética , Yersiniose/prevenção & controle
10.
Front Microbiol ; 10: 1163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214135

RESUMO

Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a ß-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.

11.
Cell Surf ; 5: 100025, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743141

RESUMO

We set out to develop scalable assays to measure bacterial adhesion to mammalian extracellular matrix proteins, with the aim to perform high-throughput screening for inhibitors. Our model system is the trimeric autotransporter adhesin YadA from Yersinia enterocolitica that binds to collagen. Using bacterial cells expressing GFP under an inducible promotor, and co-expressing the adhesin of choice, we were able to establish a 384-well plate-based assay that allowed us to screen 28,000 compounds in 8 days (3520 compounds per day). We have collected all parameters that were essential in assay development, and describe how they can be tuned for improved performance. Out of 28,000 compounds, 5 compounds showed significant inhibitory activity, measured as loss of fluorescence compared to control wells. Our assay is easy to scale up, and can be adopted to different ECM component/Adhesin combinations. Alternatively, bacterial pathogens (harboring deletion mutants of adhesins compared to wildtype) could be used directly in the same assay if they express GFP as a reporter at high levels.

12.
Cell Surf ; 5: 100032, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803021

RESUMO

Cyclic diguanylate (c-di-GMP) signalling affects several cellular processes in Bacillus cereus group bacteria including biofilm formation and motility, and CdgF was previously identified as a diguanylate cyclase promoting biofilm formation in B. thuringiensis. C-di-GMP can exert its function as a second messenger via riboswitch binding, and a functional c-di-GMP-responsive riboswitch has been found upstream of cbpA in various B. cereus group strains. Protein signature recognition predicted CbpA to be a cell wall-anchored surface protein with a fibrinogen or collagen binding domain. The aim of this study was to identify the binding ligand of CbpA and the function of CbpA in cellular processes that are part of the B. cereus group c-di-GMP regulatory network. By global gene expression profiling cbpA was found to be down-regulated in a cdgF deletion mutant, and cbpA exhibited maximum expression in early exponential growth. Contrary to the wild type, a ΔcbpA deletion mutant showed no binding to collagen in a cell adhesion assay, while a CbpA overexpression strain exhibited slightly increased collagen binding compared to the control. For both fibrinogen and fibronectin there was however no change in binding activity compared to controls, and CbpA did not appear to contribute to binding to abiotic surfaces (polystyrene, glass, steel). Also, the CbpA overexpression strain appeared to be less motile and showed a decrease in biofilm formation compared to the control. This study provides the first experimental proof that the binding ligand of the c-di-GMP regulated adhesin CbpA is collagen.

13.
J Vis Exp ; (139)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222159

RESUMO

A first approach to study the function of an unknown gene in bacteria is to create a knock-out of this gene. Here, we describe a robust and fast protocol for transferring gene deletion mutations from one Escherichia coli strain to another by using generalized transduction with the bacteriophage P1. This method requires that the mutation be selectable (e.g., based on gene disruptions using antibiotic cassette insertions). Such antibiotic cassettes can be mobilized from a donor strain and introduced into a recipient strain of interest to quickly and easily generate a gene deletion mutant. The antibiotic cassette can be designed to include flippase recognition sites that allow the excision of the cassette by a site-specific recombinase to produce a clean knock-out with only a ~100-base-pair-long scar sequence in the genome. We demonstrate the protocol by knocking out the tamA gene encoding an assembly factor involved in autotransporter biogenesis and test the effect of this knock-out on the biogenesis and function of two trimeric autotransporter adhesins. Though gene deletion by P1 transduction has its limitations, the ease and speed of its implementation make it an attractive alternative to other methods of gene deletion.


Assuntos
Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Deleção de Genes
14.
J Am Chem Soc ; 135(22): 8222-6, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23611511

RESUMO

Protein mutants are studied in a variety of contexts in the life sciences. However, individual mutations need to be generated in order to transcribe and translate the respective protein variants. Here, we introduce a novel strategy for controlling the incorporation of different amino acids in response to an amber stop codon by utilizing switchable designer transfer RNAs in Escherichia coli .


Assuntos
Aminoácidos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , RNA Catalítico/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/genética , Escherichia coli/metabolismo , Proteínas/genética , RNA Catalítico/química , RNA de Transferência/química
15.
RNA Biol ; 10(6): 1010-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23595083

RESUMO

Synthetic biology approaches often combine natural building blocks to generate new cellular activities. Here, we make use of two RNA elements to design a regulatory device with novel functionality. The system is based on a hammerhead ribozyme (HHR) that cleaves itself to generate a liberated ribosome-binding site and, thus, permits expression of a downstream gene. We connected a temperature-responsive RNA hairpin to the HHR and, thus, generated a temperature-controlled ribozyme that we call thermozyme. Specifically, a Salmonella RNA thermometer (RNAT) known to modulate small heat shock gene expression by temperature-controlled base-pairing and melting was fused to the ribozyme. Following an in vivo screening approach, we isolated two functional thermozymes. In vivo expression studies and in vitro structure probing experiments support a mechanism in which rising temperatures melt the thermometer structure impairing the self-cleavage reaction of the ribozyme. Since RNA cleavage is necessary to liberate the RBS, these engineered thermozymes shut off gene expression in response to a temperature increase and, thus, act in a reverse manner as the natural RNAT. Our results clearly emphasize the highly modular nature and biotechnological potential of ribozyme-based RNA thermometers.


Assuntos
Resposta ao Choque Térmico/genética , RNA Catalítico/química , RNA Catalítico/metabolismo , Ribossomos/metabolismo , Regiões 5' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Clivagem do RNA , RNA Catalítico/genética , Ribossomos/genética , Temperatura
16.
Mol Biosyst ; 8(9): 2242-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22777205

RESUMO

In cellular systems environmental and metabolic signals are integrated for the conditional control of gene expression. On the other hand, artificial manipulation of gene expression is of high interest for metabolic and genetic engineering. Especially the reprogramming of gene expression patterns to orchestrate cellular responses in a predictable fashion is considered to be of great importance. Here we introduce a highly modular RNA-based system for performing Boolean logic computation at a post-transcriptional level in Escherichia coli. We have previously shown that artificial riboswitches can be constructed by utilizing ligand-dependent Hammerhead ribozymes (aptazymes). Employing RNA self-cleavage as the expression platform-mechanism of an artificial riboswitch has the advantage that it can be applied to control several classes of RNAs such as mRNAs, tRNAs, and rRNAs. Due to the highly modular and orthogonal nature of these switches it is possible to combine aptazyme regulation of activating a suppressor tRNA with the regulation of mRNA translation initiation. The different RNA classes can be controlled individually by using distinct aptamers for individual RNA switches. Boolean logic devices are assembled by combining such switches in order to act on the expression of a single mRNA. In order to demonstrate the high modularity, a series of two-input Boolean logic operators were constructed. For this purpose, we expanded our aptazyme toolbox with switches comprising novel behaviours with respect to the small molecule triggers thiamine pyrophosphate (TPP) and theophylline. Then, individual switches were combined to yield AND, NOR, and ANDNOT gates. This study demonstrates that post-transcriptional aptazyme-based switches represent versatile tools for engineering advanced genetic devices and circuits without the need for regulatory protein cofactors.


Assuntos
Biossíntese de Proteínas/genética , RNA Catalítico/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação de Ácido Nucleico
17.
Methods Mol Biol ; 848: 455-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22315086

RESUMO

The development of artificial switches of gene expression is of high importance for future applications in biotechnology and synthetic biology. We have developed a powerful RNA-based system which allows for the ligand-dependent and reprogrammable control of gene expression in Escherichia coli. Our system makes use of the hammerhead ribozyme (HHR) which acts as molecular scaffold for the sequestration of the ribosome binding site (RBS), mimicking expression platforms in naturally occurring riboswitches. Aptamer domains can be attached to the ribozyme as exchangeable ligand-sensing modules. Addition of ligands to the bacterial growth medium changes the activity of the ligand-dependent self-cleaving ribozyme which in turn switches gene expression. In this chapter, we describe the in vivo screening procedure allowing for reprogramming the ligand-specificity of our system.


Assuntos
RNA Catalítico/metabolismo , Sequência de Bases , Sítios de Ligação , Escherichia coli/genética , Código Genético/genética , Engenharia Genética , Ligantes , Reação em Cadeia da Polimerase , RNA Catalítico/genética , Riboswitch/genética , Especificidade por Substrato , Biologia Sintética
18.
Angew Chem Int Ed Engl ; 48(9): 1629-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19156780

RESUMO

Tag for professionals: A fluorescently tagged clustered mannoside DCG-04 analogue (see structure) is designed and synthesized using a modular approach. Uptake of the probe in professional antigen presenting cells and subsequent labeling of cathepsins proceeded in a mannose-receptor dependent manner.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Catepsinas/metabolismo , Animais , Células Cultivadas , Lectinas Tipo C/metabolismo , Leucina/análogos & derivados , Leucina/síntese química , Leucina/química , Leucina/farmacologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Ratos , Receptores de Superfície Celular/metabolismo
19.
J Am Chem Soc ; 130(44): 14802-12, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18826316

RESUMO

Immobilized lanthanide ions offer the opportunity to refine structures of proteins and the complexes they form by using restraints obtained from paramagnetic NMR experiments. We report the design, synthesis, and spectroscopic evaluation of the lanthanide chelator, Caged Lanthanide NMR Probe 5 (CLaNP-5) readily attachable to a protein surface via two cysteine residues. The probe causes tunable pseudocontact shifts, alignment, paramagnetic relaxation enhancement, and luminescence, by chelating it to the appropriate lanthanide ion. The observation of single shifts and the finding that the magnetic susceptibility tensors obtained from shifts and alignment analyses are highly similar strongly indicate that the probe is rigid with respect to the protein backbone. By placing the probe at various positions on a model protein it is demonstrated that the size and orientation of the magnetic susceptibility tensor of the probe are independent of the local protein environment. Consequently, the effects of the probe are readily predictable using a protein structure only. These findings designate CLaNP-5 as a protein probe to deliver unambiguous high quality structural restraints in studies on protein-protein and protein-ligand interactions.


Assuntos
Quelantes/química , Elementos da Série dos Lantanídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Compostos Organometálicos/química , Proteínas/análise , Quelantes/síntese química , Ligantes , Magnetismo , Modelos Moleculares , Compostos Organometálicos/síntese química , Conformação Proteica , Proteínas/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...